Trigonometric Identities

Pythagorean Identities

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \\
& \cot ^{2} \theta+1=\csc ^{2} \theta
\end{aligned}
$$

Co-function Identities

$$
\sin \left(\frac{\pi}{2}-u\right)=\cos (u)
$$

$$
\cos \left(\frac{\pi}{2}-u\right)=\sin (u)
$$

$$
\tan \left(\frac{\pi}{2}-u\right)=\cot (u)
$$

$$
\cot \left(\frac{\pi}{2}-u\right)=\tan (u)
$$

$$
\csc \left(\frac{\pi}{2}-u\right)=\sec (u)
$$

$$
\sec \left(\frac{\pi}{2}-u\right)=\csc (u)
$$

Even Odd Identities

$$
\begin{aligned}
& \sin (-\mathrm{u})=-\sin (\mathrm{u}) \\
& \cos (-\mathrm{u})=\cos (\mathrm{u}) \\
& \tan (-\mathrm{u})=-\tan (\mathrm{u}) \\
& \csc (-\mathrm{u})=-\csc (\mathrm{u}) \\
& \sec (-\mathrm{u})=\sec (\mathrm{u}) \\
& \cot (-\mathrm{u})=-\cot (\mathrm{u})
\end{aligned}
$$

Sum Difference Identities

$$
\begin{aligned}
& \sin (u \pm v)=\sin (u) \cos (v) \pm \cos (u) \sin (v) \\
& \cos (u \pm v)=\cos (u) \cos (v) \mp \sin (u) \sin (v) \\
& \tan (u \pm v)=\frac{\tan (u) \pm \tan (v)}{1 \mp \tan (u) \tan (v)}
\end{aligned}
$$

Double Angle Identities

$\sin (2 u)=2 \sin (u) \cos (u)$
$\cos (2 u)=\cos ^{2}(u)-\sin ^{2}(u)$
$\cos (2 \mathrm{u})=2 \cos ^{2}(\mathrm{u})-1$
$\cos (2 u)=1-2 \sin ^{2}(u)$
$\tan (2 u)=\frac{2 \tan (u)}{1-\tan ^{2}(u)}$

Half Angle Identities

$\sin ^{2}(u)=\frac{1-\cos (2 u)}{2}$
$\cos ^{2}(u)=\frac{1+\cos (2 u)}{2}$
$\tan ^{2}(u)=\frac{1-\cos (2 u)}{1+\cos (2 u)}$
Sum to Product Identities

$$
\begin{aligned}
& \sin (u)+\sin (v)=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right) \\
& \sin (u)-\sin (v)=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
\end{aligned}
$$

$$
\cos (u)+\cos (\mathrm{v})=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)
$$

$$
\cos (u)-\cos (v)=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
$$

Product to Sum Identities

$\sin (u) \sin (v)=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$
$\cos (u) \cos (v)=\frac{1}{2}[\cos (u-v)+\cos (u+v)]$
$\sin (u) \cos (v)=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
$\cos (u) \sin (v)=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$

